
Excited State Methods
Elisabeth Welizky

2024-10-15

Table of contents

Introduction and Ansatz 1

Excited state methods 3
Folded Spectrum Method . 3
Approximation Method . 4
Projection Method . 5

Optimization process 8

Chemistry example 21

Conclusion 23
Further Reading . 23

Introduction and Ansatz

In this work we discuss an Eigensolver, which aims to find the ground state of a given Electronic
Hamiltonian. To briefly recap: A Hamiltonian itself describes the possible energies of a physical
system, including both the kinetic and potential energy of that system and is represented by
a matrix. If we know the Hamiltonian, we can gain information about the physical states of
the system. In the covered example, the Hamiltonian takes the following form

1.5 − 0.5 ⋅ (𝑍1 − 𝑍0 + 𝑍0 ⋅ 𝑍1 + 𝑋1 − 𝑍0 ⋅ 𝑋1)

#| code-fold: True

1

import tequila as tq
import numpy as np
H = 1.5-0.5*(tq.paulis.Z(1)-tq.paulis.Z(0)+tq.paulis.Z(0)*tq.paulis.Z(1 ⌋

)+ tq.paulis.X(1)-tq.paulis.Z(0)*tq.paulis.X(1))↪

v, vv = np.linalg.eigh(H.to_matrix())
print("Eigenvalues: ", v)

Eigenvalues: [0. 1. 2. 3.]

An Ansatz is the parameterized quantum circuit, which, in our case, we are going to define as
follows:

a = tq.Variable("a")
U = tq.gates.Ry(angle=(a)*np.pi,target=0)
U+= tq.gates.CNOT(0,1)
U+= tq.gates.Ry(angle=(a/2)*np.pi, target=1)

Figure 1: Circuit

At this point we need to take into consideration, that Ansatz errors may occur, since we
perceive the Ansatz as an educated guess.

By computing the Eigenvalues beforehand, we were able to match the circuit on smooth values
at the angles 0,1,2 and 3. It should also be noted that in the following only values in the interval
[0,3] are considered. Therefore, values outside the interval are mapped back to the interval by
applying modulo 4.

Our circuit consists of two qubits, hence we are able to have four Eigenvalues 𝜓𝑘. Furthermore,
we know that every state has its expectation value. Since we can regard the Hamiltonian as
a Hermition Operator we can write it as follows:

𝐻 ∣𝜓𝑔𝑢𝑒𝑠𝑠⟩ = 𝐸𝑔𝑢𝑒𝑠𝑠 ∣𝜓𝑔𝑢𝑒𝑠𝑠⟩
We assume 𝐸𝑔𝑢𝑒𝑠𝑠 to represent the expectation value of the given Hamiltonian. Furthermore
we know, that 𝐸𝑔𝑢𝑒𝑠𝑠 is a minimum under the precondition that it approximates to a specific
Eigenstate.

2

Our goal is to minimize the expectation value of the energy, such that no other energy is
greater than 𝐸𝑔𝑢𝑒𝑠𝑠. Therefore we will have a solid approximation of the ground state energy.
In our case the sought Eigenvalue is the angle of the minimum Eigenstate, which corresponds
to the desired ground state energy. It can be found by applying a minimization method to the
expectation value 𝐸𝑔𝑢𝑒𝑠𝑠.

In the following graphic we can observe the plotted, expected energy depending on the angle
a. The Eigenstates are those energies corresponding to the already calculated Eigenvalues for
our circuit.

Figure 2: Hamiltonian

The circles in this graph represent the sought Eigenstates of 𝐻. Therefore, the corresponding
angles are the targeted Eigenvalues. It is essential to point out that the minima and maxima
of this graph are potential Eigenvalues, but they don´t neccessarily need to be. Only, when
applying different excited state methods the real Eigenvalues will emerge. In this example we
know the values. However, without prior knowledge, we are forced to assume certain starting
values. Therefore, on one hand, it is possible to get some potential Eigenvalues at first, which
will later turn out to be irrelevant. On the other hand, saddle points might turn into minima
or maxima when applying the minimization on multiple, consecutively executed excited state
methods.

3

Excited state methods

After having introduced the main goal and concept, we should clarify the implementation and
usage of different excited state methods. We assume, that the Hamiltonian and our computed
circuit 𝑈 , depending on the angles 𝜙, is already given in the beginning. These methods
particularly differ in the way of defining the expectation value, with the given Hamiltonian
and circuit. Also, their superposition and the parametrization of our given circuit play a
crucial role.

Folded Spectrum Method

First we discuss the popular Folded Spectrum method. In general, it is formulated like this:
⟨(𝐻 − 𝜇)2⟩𝑈(𝜙) with 𝜇 being the estimated value. Here it is initially assigned to 1, since this
is the first excited state in our case.

def expectation_value_folded_spectrum(H,U, constant):
return tq.ExpectationValue(H=(H-constant)**2, U=U)

Figure 3: Folded Spectrum Method

This method modifies the Hamiltonian, by shifting its energy values. If done properly, this
concludes in the targeted excited state becoming the lowest energy state in the plotted graph.
Here, the local maximum at angle 2.0 and local minimum at angle 3.0 are being shifted to

4

their initial energy value + 1.0. Simultaneously, every other value is being shifted to the initial
energy value - 1.0.

Approximation Method

The next method is the approximation method, which differs in the way of applying the
expectation value. This looks as follows: (⟨𝐻⟩𝑈(𝜙) − 𝜇)2.

At first we compute the expectation value of our Hamiltonian. As next step we approximate
the difference to the constant 𝜇. This constant is an assumption of what we think might be
the target Eigenstate. Therefore we are minimizing the difference between the output energy
of our Hamiltonian and the target energy 𝜇.

def expectation_value_approximation(H,U, constant):
return (tq.ExpectationValue(H=H, U=U)-constant)**2

Figure 4: Approximation Method

Since we initialized 𝜇 to 1, we mapped every energy value from 1.0 to 0.0. Thus, all affected
points become the new local minima. This is caused by minimizing the difference between our
initial energy values and the target energy 𝜇 and (1.0 − 1.0)2 = 0.0. The same procedure is
also applied to any other value of our energy graph. In the end, the approximation affects the
energy graph similarly to the Folded Spectrum method, since it alters the initial Hamiltonian
by distorting or smoothing the spectrum. Here, the energies of the local maxima are being

5

shifted to their initial energy value + 𝜇 as well. In contrast to the Folded Spectrum method,
this graph now mainly differs in the amount of local minimas, since the Hamiltonian had two
energies of value 1.0 before.

Projection Method

Our last presented strategy is the Projection method, which is also known as the Variational
Quantum Deflation (VQD) algorithm.

This method uses a variational technique to find the k Eigenvalues of the given Hamiltonian.
With this approach we are also able to find excited states by minimizing an objective function,
which represents the disparity between the measured expectation values and the true ground
state energy. This strategy penalizes overlapping states over several applications of the
excited state methods.

To find the k-th lowest excited state, VQD requires us to find the lowest k - 1 states first. We
then minimize the energy, while constraining the state |𝜓(𝜙)⟩ to be orthogonal to the lower
known states |𝜓(𝜙𝑖)⟩ :

minimize
𝜙

⟨𝐻⟩𝜓(𝜙) (1)

subject to ⟨𝜓(𝜙𝑖) | 𝜓(𝜙)⟩ = 0,∀𝑖 ∈ {0, … 𝑘 − 1} (2)

The constraint is given by the orthonormality of the eigenbasis of 𝐻. We can write the
optimization problem as the cost function:

𝐶(𝜙) = ⟨𝜓(𝜙)|𝐻|𝜓(𝜙)⟩ + ∑𝑘−1
𝑖=0 𝜆𝑖|⟨𝜓(𝜙𝑖)|𝜓(𝜙)⟩|2

where 𝜆𝑖 are the penalty weights. By optimizing over this cost function we are able to compute
the excited state energies.

6

We define (𝑈𝑖)𝑖∈{0,…𝑘−1} to be the circuits preparing the i-th state and U as the circuit preparing
|𝜓(𝜙)⟩.
The second term describes the squares of overlaps of the current circuit U, generally known as
the fidelity.
Referring to this paper, we get the following conversion:

| ⟨𝜓(𝜙𝑖)|𝜓(𝜙)|𝜓(𝜙𝑖)|𝜓(𝜙)⟩ |2
= ⟨𝜓(𝜙𝑖)|𝜓(𝜙)|𝜓(𝜙𝑖)|𝜓(𝜙)⟩ ⟨𝜓(𝜙)|𝜓(𝜙𝑖)|𝜓(𝜙)|𝜓(𝜙𝑖)⟩
= ⟨𝜓(𝜙𝑖)| 𝑈𝑖 |0⟩ ⟨0| 𝑈†

𝑖 |𝜓(𝜙𝑖)⟩
= ⟨𝑃0⟩𝑈†

𝑖 𝑈(𝜙)

The expectation values of the projected Hamiltonian can then be described as sum of
expectation values of the original Hamiltonian and projectors of the current circuit U:

⟨𝐻⟩𝑈(𝜙) + ∑𝑘−1
𝑖=0 𝜆𝑖⟨𝑃0⟩𝑈†

𝑖 𝑈(𝜙).

Thereby we create a sequential strategy in which the ground state is first being calculated and
then projected outwards. Therefore, a new possible ground state is able to emerge from the
projection.

def expectation_value_orthogonality_constraint(H,U, circuit_list,
constant_list):↪

E = tq.ExpectationValue(H=H, U=U)
if (len(circuit_list) != len(constant_list)):

raise ValueError(f"Circuit_list and constant_list have different
lengths. len(circuit_list): '{len(circuit_list)}',
len(constant_list): '{len(constant_list)}'")

↪

↪

list_length = len(circuit_list)
for l in range(list_length):

if (circuit_list[l].extract_variables() == None):
raise ValueError(f"Circuit_list contains unparametrized

elements")↪

U_list = []
for i in range(0, list_length):

U_k = U + circuit_list[i].dagger() 1

P_k = 1
for k in U_k.qubits:

P_k*= tq.paulis.Qp(k) 2

E_k = tq.ExpectationValue(H=P_k, U=U_k)

7

https://arxiv.org/pdf/2011.05938

U_list.append(constant_list[i]*E_k)
return E + sum(U_list)

1 The circuit list consists of the circuits preparing the i-th state. The addition is not an
actual addition, but the concatenation operator for quantum circuits.

2 This is the 0-projector.

Figure 5: Variational Quantum Deflation Algorithm

In our case, we already know that the energy is 0 at angle 3.0 (so we reached a possible ground
state). Hence, we set 𝜆𝑖 to 10, so that the energy at angle 3.0 will become greater than any
other energy in this graph.

While the Folded Spectrum and Approximation methods are generally easier to implement,
they may have limitations in terms of accuracy and efficiency. The Projection method offers
a higher accuracy and ensures orthogonality between the excited states, but it can be more
complex and computationally demanding, particularly for larger systems. Therefore it is a
good idea to experiment with different methods to determine the most suitable one for a given
application.

Optimization process

Now, having discussed all possible methods, we´re going to test different ways of concate-
nating those to find the ground state energy with regard to the optimal Eigenstates and the

8

corresponding Eigenvalues. The whole process of finding the ground state energy functions
similarly to the popular gradient descent, since we work stepwise through our generated graph
and create a new minimum at each iteration. For this purpose Tequila provides its own method
for the entire optimization process, the minimize-function. This method takes the expectation
value as well as a dictionary of additional parameters, such as the initial values, as input.

#| code-fold: true
def minimization(E, dict_of_parameters=None):

if dict_of_parameters is None:
dict_of_parameters = {}

if not isinstance(dict_of_parameters, dict):
raise TypeError(f"dict expected, got

'{type(dict_of_parameters).__name__}'")↪

dict_of_parameters.setdefault("method", "BFGS")
dict_of_parameters.setdefault("initial_values", "random")
return tq.minimize(E, **dict_of_parameters)

Below you can first see all neccessary functions, including the excited state methods, for the
minimization as well as for plotting. Here, when calling the main function, we pass the fol-
lowing input parameters: Hamiltonian H, curcuit U, variables/angles as dictionary, a variance
threshold (optional) and list of ordered excited state methods (optional) eg. [“A”,“P”,“F”]
for Approximation, Projection, Folded Spectrum. In this implementation, the final minimum,
found after applying the optimization on a certain excited state method, will become the start-
ing point of the minimization of the next method. Also, we use the previous result energy as
expectation value for the input of the current minimization.

After the optimization process was completed successfully, you are able to trace the derivation
process of the ground state energies in the corresponding 1D or 2D diagrams.

import tequila as tq
from tequila import numpy as np
from numpy import pi
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt

def main(H,U, variables, variance_threshold=1.e-8, list=None):
'''This is the main part of this programm, where the optimization

strategies "folded spectrum", "approximation" and "projection"↪

are being tested and plotted.
Input: Hamiltonian H

curcuit U

9

variables/angles as dictionary
variance threshold (optional)
list of ordered functions (optional) eg. ["A","P","F"] for

Approximation, Projection, Folded Spectrum↪

Output: 1D or 2D graphics showing the optimization process as well
as the Eigenvalues/Eigenstates of H'''↪

eigenvalues, vv = np.linalg.eigh(H.to_matrix())
oneDimensional = True
if (len(variables) == 2):

oneDimensional=False
variables = {"a": -1, "b": -0.5}

else:
variables = {"a": -1}

circuit_list = []
constant_list = []
list_length = 4
constant = 1

for l in range(list_length):
circuit_list.append(U.map_variables(variables))
constant_list.append(constant)
constant += 1

if list==None:
First Projection, then Approximation, then Folded Spectrum
E = eigensolver.expectation_value_orthogonality_constraint(H,U,

circuit_list, constant_list)↪

E_optimized = eigensolver.minimization(E, {"method":"BFGS"})
eigensolver.plotting_preparation(E, E_optimized, "Energy with

orthogonality constraint", eigenvalues, oneDimensional)↪

if eigensolver.proof_eigenstate(H,U, variables,
variance_threshold):↪

print("The optimal eigenstate with a variance <= ",
variance_threshold, "was found.")↪

variables = E_optimized.variables
mu = tq.simulate(tq.ExpectationValue(H=H, U=U),

variables=variables)↪

E_AFS = eigensolver.expectation_value_approximation(H,U, mu)
E_AFS_optimized = eigensolver.minimization(E_AFS,

{"method":"BFGS", "initial_values":variables})↪

10

eigensolver.plotting_preparation(E_AFS, E_AFS_optimized, "Energy
with approximation", eigenvalues, oneDimensional)↪

if eigensolver.proof_eigenstate(H,U, variables,
variance_threshold):↪

print("The optimal eigenstate with a variance <= ",
variance_threshold, "was found.")↪

variables = E_AFS_optimized.variables
mu = tq.simulate(tq.ExpectationValue(H=H, U=U),

variables=variables)↪

E_FS = eigensolver.expectation_value_folded_spectrum(H,U, mu)
E_FS_optimized = eigensolver.minimization(E_FS,

{"method":"BFGS", "initial_values":variables})↪

eigensolver.plotting_preparation(E_FS, E_FS_optimized, "Energy
with folded spectrum", eigenvalues, oneDimensional)↪

if eigensolver.proof_eigenstate(H,U, variables,
variance_threshold):↪

print("The optimal eigenstate with a variance <= ",
variance_threshold, "was found.")↪

else:

for l in list:
if (l.isalpha()==False or len(l)!= 1):

raise ValueError('An elemet of the list is not one
letter')↪

if (l == list[0]):
mu = 1

else:
variables = E_optimized.variables
mu = tq.simulate(tq.ExpectationValue(H=H, U=U),

variables=variables)↪

if (l == "A"):
E = eigensolver.expectation_value_approximation(H,U, mu)
if (l == list[0]):

E_optimized = eigensolver.minimization(E,
{"method":"BFGS"})↪

else:
E_optimized = eigensolver.minimization(E,

{"method":"BFGS", "initial_values":variables})↪

eigensolver.plotting_preparation(E, E_optimized, "Energy
with approximation", eigenvalues, oneDimensional)↪

11

if eigensolver.proof_eigenstate(H,U, variables,
variance_threshold):↪

print("The optimal eigenstate with a variance <=
", variance_threshold, "was found.")↪

elif (l == "P"):
E =

eigensolver.expectation_value_orthogonality_constraint(H,U,
circuit_list, constant_list)

↪

↪

if (l == list[0]):
E_optimized = eigensolver.minimization(E,

{"method":"BFGS"})↪

else:
E_optimized = eigensolver.minimization(E,

{"method":"BFGS", "initial_values":variables})↪

eigensolver.plotting_preparation(E, E_optimized, "Energy
with orthogonality constraint", eigenvalues, oneDimensional)↪

if eigensolver.proof_eigenstate(H,U, variables,
variance_threshold):↪

print("The optimal eigenstate with a variance <=
", variance_threshold, "was found.")↪

elif (l == "F"):
E = eigensolver.expectation_value_folded_spectrum(H,U,

mu)↪

if (l == list[0]):
E_optimized = eigensolver.minimization(E,

{"method":"BFGS"})↪

else:
E_optimized = eigensolver.minimization(E,

{"method":"BFGS", "initial_values":variables})↪

eigensolver.plotting_preparation(E, E_optimized, "Energy
with folded spectrum", eigenvalues, oneDimensional)↪

if eigensolver.proof_eigenstate(H,U, variables,
variance_threshold):↪

print("The optimal eigenstate with a variance <=
", variance_threshold, "was found.")↪

else:
raise ValueError('An elemet of the list is not letter

"A", "P" or "F"')↪

#----------------General functions------------

12

class eigensolver:

def expectation_value_folded_spectrum(H,U, constant):
return tq.ExpectationValue(H=(H-constant)**2, U=U)

def expectation_value_approximation(H,U, constant):
return (tq.ExpectationValue(H=H, U=U)-constant)**2

def expectation_value_orthogonality_constraint(H,U, circuit_list,
constant_list):↪

E = tq.ExpectationValue(H=H, U=U)
if (len(circuit_list) != len(constant_list)):

raise ValueError(f"Circuit_list and constant_list have
different lengths. len(circuit_list):
'{len(circuit_list)}', len(constant_list):
'{len(constant_list)}'")

↪

↪

↪

list_length = len(circuit_list)
for l in range(list_length):

if (circuit_list[l].extract_variables() == None):
raise ValueError(f"Circuit_list contains unparametrized

elements")↪

U_list = []
for i in range(0, list_length):

U_k = U + circuit_list[i].dagger()
P_k = 1
for k in U_k.qubits:

P_k*= tq.paulis.Qp(k)
E_k = tq.ExpectationValue(H=P_k, U=U_k)
U_list.append(constant_list[i]*E_k)

return E + sum(U_list)

def minimization(E, dict_of_parameters=None):
if dict_of_parameters is None:

dict_of_parameters = {}
if not isinstance(dict_of_parameters, dict):

raise TypeError(f"dict expected, got
'{type(dict_of_parameters).__name__}'")↪

dict_of_parameters.setdefault("method", "BFGS")
dict_of_parameters.setdefault("initial_values", "random")
return tq.minimize(E, **dict_of_parameters)

13

def proof_eigenstate(H, U, variables, variance_threshold=1.e-4):
V = ((tq.ExpectationValue(H=H, U=U)) **2 -

tq.ExpectationValue(H=H**2, U=U)).apply(abs)↪

V = tq.simulate(V, variables)
return V <= variance_threshold

def get_optimization_energies(result):
return result.history.energies_calls

def get_optimization_angles(result, eigenvalues):
mod = len(eigenvalues)
angle_dots = [{k:v % mod for k,v in x.items()} for x in

result.history.angles_calls]↪

angles_np = np.array([list(i.values()) for i in angle_dots])
return angles_np

def compile_E_values1D(fE, angle_range):
return [fE({"a":v}) for v in angle_range]

def compile_E_values2D(fE, angle_range):
fE_result = []
for v in angle_range:

for w in angle_range:
fE_result.append(fE({"a":v, "b":w}))
return fE_result

def compile_dE_values1D(fdE, angle_range):
return [fdE({"a":v}) for v in angle_range]

def compile_dE_values2D(fdE, angle_range):
fE_result = []
for v in angle_range:

for w in angle_range:
fE_result.append(fdE({"a":v, "b":w}))
return fE_result

calculating min and max values of range of all energies (E or dE)
for plotting. Returning array [y_min, y_max]↪

def min_max_y_value(E, values_E, values_dE, energy_dots):
min_max = []

14

all_energy_values = []
for v in values_E:

all_energy_values.append(v)
for v in values_dE:

all_energy_values.append(v)
y_min = energy_dots[0]
y_max = energy_dots[0]
for energy in all_energy_values:

if energy < y_min:
y_min = energy

if energy > y_max:
y_max = energy

min_max.append(y_min)
min_max.append(y_max)
return min_max

def plotting1D(aprox_name, angle_range, angles_np, values_E,
values_dE, fE, energy_np, start_dot_E, end_dot_E,
start_dot_angle, end_dot_angle, angles_of_eigenvalues, y_min,
y_max):

↪

↪

↪

plt.plot(angle_range, values_E, label= str(aprox_name))

plt.plot(angle_range, values_dE, label= 'Derivation of the ' +
str(aprox_name))↪

plt.legend([str(aprox_name), 'Derivation of the ' +
str(aprox_name)])↪

plt.scatter(angles_np, energy_np)

for a in angles_of_eigenvalues:
plt.plot(a, fE({"a":a}), "o",mfc = '#4CAF50',ms = 10,mec =

'r')↪

plt.vlines(x=a, colors='purple', ymin=y_min-5, ymax=y_max+5,
ls='--', lw=2, label='Eigenvalues')↪

plt.annotate('Starting point',
ha = 'center', va = 'bottom',
xytext = (start_dot_angle , start_dot_E - 2),
xy = (start_dot_angle, start_dot_E),
arrowprops = { 'facecolor' : 'black', 'shrink' : 0.5, 'width' :

0.5, 'headwidth' : 10})↪

plt.annotate('End point',

15

ha = 'center', va = 'bottom',
xytext = (end_dot_angle, end_dot_E + 2),
xy = (end_dot_angle, end_dot_E),
arrowprops = { 'facecolor' : 'black', 'shrink' : 0.5, 'width' :

0.5, 'headwidth' : 10})↪

plt.xlabel("Eigenvalues")
plt.ylabel("Eigenstates")
plt.show()

def plotting2D(aprox_name, start_dot_E, end_dot_E, start_dot_angle,
end_dot_angle, fE, angles_of_eigenvalues):↪

X=np.linspace(0.0, 2.0*np.pi,25)
Y=X
Z = np.zeros([25,25])
for i,x in enumerate(X):

for j,y in enumerate(Y):
Z[i,j]= fE({"a":x, "b":y})

X, Y = np.meshgrid(X, Y)
ax = plt.figure().add_subplot(projection='3d')
ax.plot_surface(X, Y, Z, edgecolor='royalblue', lw=0.5,

rstride=8, cstride=8,↪

alpha=0.3, shade=True)

for a in angles_of_eigenvalues:
for b in angles_of_eigenvalues:

if (a == angles_of_eigenvalues[0] and b ==
angles_of_eigenvalues[0]):↪

ax.plot(a,b, fE({"a":a, "b":b}), "o",mfc =
'#4CAF50',ms = 10,mec = 'r',label="Possible Eigenvalues")↪

else:
ax.plot(a,b, fE({"a":a, "b":b}), "o",mfc =

'#4CAF50',ms = 10,mec = 'r')↪

if (fE({"a":end_dot_angle[0], "b":end_dot_angle[1]}) ==
fE({"a":start_dot_angle[0], "b":start_dot_angle[1]})):↪

ax.scatter3D(start_dot_angle[0],
start_dot_angle[1],fE({"a":start_dot_angle[0],
"b":start_dot_angle[1]}),color='red', s=25, label="Starting point
equals End point")

↪

↪

↪

else:

16

ax.scatter3D(end_dot_angle[0],
end_dot_angle[1],fE({"a":end_dot_angle[0],
"b":end_dot_angle[1]}),color='black', s=25, label="Starting point")

↪

↪

ax.scatter3D(start_dot_angle[0],
start_dot_angle[1],fE({"a":start_dot_angle[0],
"b":start_dot_angle[1]}),color='red', s=25, label="End point")

↪

↪

ax.set_xlabel('Angle "a"')
ax.set_ylabel('Angle "b"')
ax.set_zlabel('Energy')
ax.legend()
ax.set_title(str(aprox_name))
plt.show()

def plotting2D_chemistry(aprox_name, fE):
X=np.linspace(0.0, 2.0*np.pi,25)
Y=X
Z = np.zeros([25,25])
for i,x in enumerate(X):

for j,y in enumerate(Y):
Z[i,j]= fE({"a":x, "b":y})

X, Y = np.meshgrid(X, Y)
ax = plt.figure().add_subplot(projection='3d')
ax.plot_surface(X, Y, Z, edgecolor='royalblue', lw=0.5,

rstride=8, cstride=8,↪

alpha=0.3, shade=True)

ax.set_xlabel('Angle "a"')
ax.set_ylabel('Angle "b"')
ax.set_zlabel('Energy')
ax.legend()
ax.set_title(str(aprox_name))
plt.show()

def plotting_preparation(E, result, aprox_name, eigenvalues,
oneDimensional=True):↪

angle_range = (np.linspace(0,4,100))
angles_of_eigenvalues = eigenvalues

fE = tq.compile(E)

17

if oneDimensional:
values_E = eigensolver.compile_E_values1D(fE, angle_range)
dE = tq.grad(E, "a")

else:
values_E = eigensolver.compile_E_values2D(fE, angle_range)
dE = tq.grad(E, "a", "b")

fdE = tq.compile(dE)
if oneDimensional:

values_dE = eigensolver.compile_dE_values1D(fdE,
angle_range)↪

else:
values_dE = eigensolver.compile_dE_values2D(fdE,

angle_range)↪

angles = eigensolver.get_optimization_angles(result,
eigenvalues)↪

energy_dots = eigensolver.get_optimization_energies(result)

if oneDimensional:
angles_np = []
for xs in angles:

for x in xs:
angles_np.append(x)

else:
angles_np = angles

y_min = eigensolver.min_max_y_value(E, values_E, values_dE,
energy_dots)[0]↪

y_max = eigensolver.min_max_y_value(E, values_E, values_dE,
energy_dots)[1]↪

start_dot_E = energy_dots[0]
end_dot_E = energy_dots[len(energy_dots)-1]
start_dot_angle = angles_np[0]
end_dot_angle = angles_np[len(energy_dots)-1]

if oneDimensional:
eigensolver.plotting1D(aprox_name, angle_range, angles_np,

values_E, values_dE, fE, energy_dots, start_dot_E, end_dot_E,
start_dot_angle, end_dot_angle, angles_of_eigenvalues, y_min, y_max)

↪

↪

18

else:
eigensolver.plotting2D(aprox_name, start_dot_E, end_dot_E,

start_dot_angle, end_dot_angle, fE, angles_of_eigenvalues)↪

def min_max_energy_and_angle(fE,values_E, angle_range):
min_E = min(np.array(values_E))

for a in angle_range:
if (fE({"a":a}) == min_E):

min_angle = a
break

max_E = max(np.array(values_E))
for a in angle_range:

if (fE({"a":a}) == max_E):
max_angle = a
break

return min_E, max_E, min_angle, max_angle

Given Hamiltonian H
H = 1.5-0.5*(tq.paulis.Z(1)-tq.paulis.Z(0)+tq.paulis.Z(0)*tq.paulis.Z(1 ⌋

)+tq.paulis.X(1)-tq.paulis.Z(0)*tq.paulis.X(1))↪

------------1D model--------------
a = tq.Variable("a")
variables = {"a": -1}
U = tq.gates.Ry(angle=(a)*np.pi,target=0)
U+= tq.gates.CNOT(0,1)
U+= tq.gates.Ry(angle=(a/2)*np.pi, target=1)
main(H, U, variables, variance_threshold=1.e-8, list=["A", "F", "P",

"F"])↪

------------2D model--------------
a = tq.Variable("a")
b = tq.Variable("b")

variables = {"a":1.0, "b":0.7}
U = tq.gates.Ry(angle=(a)*np.pi,target=0)
U+= tq.gates.CNOT(0,1)
U+= tq.gates.Ry(angle=(b)*np.pi, target=1)

19

main(H, U, variables, variance_threshold=1.e-8, list=["A", "F", "P",
"F"])↪

Let´s take a look at an exemplary 1D optimization using the approximation and subsequent
folded spectrum method.

Figure 6: Energy graph

Figure 7: Optimization process

Optimization with the Approximation method

First, we start our optimization at Angle 2.15. The blue graph shows us the energy curve after
applying the approximation method, the orange one the corresponding gradient. Analyzing
this, there is a decline in energy at the starting point, as the orange graph is below the 0
energy level. According to the optimization procedure, we now the curve until we reach a local
minimum (obervable along the blue dots). In our case, we reach the local minimum after 7
steps at angle 3.7.

This is now the starting point of the Folded Spectrum method. The graph has changed here:
We can see that the gradient at the start is much lower than the one of the approximation
curve at this angle. This means that there is a point that is even lower than the one previously
assumed. Therefore, we carry out the same procedure as before: we continue until we arrive
at a local minimum again. Since our optimization steps run in the right direction and in this
case we always consider the angles modulo 4, we end up on the left side again. The apparent
minimum at 0.0 is initially skipped in step 2 and since then we have been oscillating around
the local minimum. In the last step, however, we return there and remain there. Now we have
found an actual Eigenstate at angle 0.0.

The same procedure was carried out in these 2D models. First with the approximation method,
then the projection method and at the end the folded spectrum method. It is not initially
clear that the end point of the first method is the starting point of the second method. In
fact, this is the case, only the curves have changed accordingly when the projection method
has been applied. In the second diagram it is already clear that we have reached a possible

20

Figure 8: Energy graph

Figure 9: Optimization process

Optimization with the Folded Spectrum
method

Figure 10: Approximation Figure 11: Projection Figure 12: Folded Spectrum
Optimization with 2D models

21

Eigenvalue. This is evident in the last excited state method, since the optimization point does
not move, but stagnates at the minimum.

Chemistry example

Since we have now familiarized ourselves with the excited state methods, we can apply them
to a Hamiltonian and circuit from a real chemistry model. In the following code, this model
is defined based on two angles and its circuit is similar to the one from this paper (appendix).
We then are able to apply our known methods and plot them using 2D models.

#| code-fold: true
#| output: false

geometry1 = "H 1.5 0.0 0.0\nH 0.0 0.0 0.0\nH 1.5 0.0 1.5\nH 0.0 0.0 1.5"
mol = tq.Molecule(geometry=geometry1,

basis_set="sto-3g").use_native_orbitals()↪

U = tq.gates.X([0,1,2,3])
a = tq.Variable("a")#*pi
b = tq.Variable("b")#*pi
UC1 = mol.UC(0,2, a) + mol.UC(1,3, a)
UR1 = mol.UR(0,2,pi/2) + mol.UR(1,3,pi/2)
UR2 = mol.UR(0,1,pi/2) + mol.UR(2,3,pi/2)
UC2 = mol.UC(0,1, b) + mol.UC(2,3, b)

circuit_chemistry = U + UC1 + UR1.dagger() + UR2 + UC2 + UR2.dagger() 1

H = mol.make_hamiltonian()

f_E= tq.compile(tq.ExpectationValue(H=H, U=circuit_chemistry))

eigensolver.plotting2D_chemistry("Original Hamiltonian", f_E)

1 This is the given circuit, which consists of two rotations and two correlations. Thus, we
are particularly able to analize the correlators and study their behaviour.

/var/folders/pw/yjpw_zz56nv7wh1drxkrky_40000gn/T/ipykernel_84822/888881687.py:263: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
ax.legend()

22

https://arxiv.org/pdf/2207.12421

Figure 13: Circuit of chemistry model

Conclusion

In summary, this tutorial has provided an overview of quantum Eigensolvers, a powerful tool
for finding the Eigenvalues of quantum systems. We have discussed the key concepts, such as
Hamiltonians, expectation values, and excited state methods. The Tequila library was used
to implement these concepts and demonstrate their application. Building on this, we have

23

Figure 14: Hamiltonian of chemistry model

24

gained some direct optimization protocols by testing different concatenations of our excited
state methods, including the optimization after each of them.

Despite this, we need to take some potential errors, such as hardware errors, which can cause
noise, computational errors or Ansatz errors into consideration. Moreover the accuracy and
efficiency of our Eigensolver depends highly on the choice of our given excited state methods.
Of course, there are also other possibilities of concatenations, since we have a lot of freedom
in selecting the suitable parameters and order of our introduced techniques.

Overall, by addressing these challenges and leveraging future advancements, quantum Eigen-
solvers have the potential to become a valuable tool for solving complex problems in quantum
computing and beyond.

Further Reading

• https://pubs.acs.org/doi/epdf/10.1021/acs.jctc.3c01378?ref=article_openPDF
• https://www.sciencedirect.com/science/article/pii/S0370157322003118?ref=pdf_

download&fr=RR-2&rr=8d2f7feaefd39247
• https://arxiv.org/pdf/1805.08138

25

https://pubs.acs.org/doi/epdf/10.1021/acs.jctc.3c01378?ref=article_openPDF
https://www.sciencedirect.com/science/article/pii/S0370157322003118?ref=pdf_download&fr=RR-2&rr=8d2f7feaefd39247
https://www.sciencedirect.com/science/article/pii/S0370157322003118?ref=pdf_download&fr=RR-2&rr=8d2f7feaefd39247
https://arxiv.org/pdf/1805.08138

	Introduction and Ansatz
	Excited state methods
	Folded Spectrum Method
	Approximation Method
	Projection Method

	Optimization process
	Chemistry example
	Conclusion
	Further Reading

